

Zufall Health Center Continuing Dental Education Series

TODAY'S PRESENTATION

PHOTOCATALYTIC OXIDATION (PCO)
TECHNOLOGY FOR MEDICAL AND DENTAL
OFFICE AIR PURIFICATION

WILL BEGIN SHORTLY

Housekeeping Items

Please ...

- ✓ Mute yourself when not speaking
- ✓ Chat in your questions
- ✓ Raise your hand to ask a question
- ✓ Complete Needs Assessment and Evaluation Form

Dr. Jason Field

Learning Objectives:

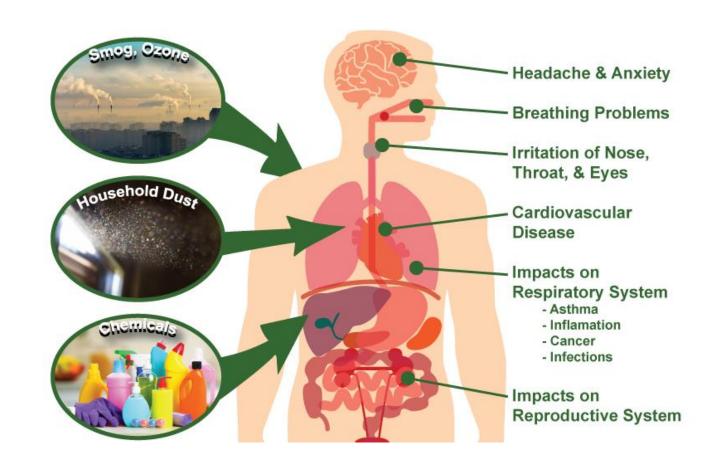
Learn fundamentals of different air purification technologies

Describe Active PCO technology: Background, how it works, and its applications for medical and dental facilities

Define how photocatalytic coatings are used for air purification and surface sanitation

PCO Technology for Medical & Dental Office Air Purification

Disclosure: Dr. Jason Field is the Director of America Nanocoat.


Outline

- 1. Indoor air quality
- 2. Air purification technologies
- 3. PCO technology: background, safety, how it works
- 4. Air purification for doctoral and dental offices
- 5. Photocatalytic coatings for air and surface cleaning

Indoor Air Quality: Health Implications

- Most people spend more than 90% of their time in an indoor environment.
- Indoor air contaminants have been globally recognized as public health hazards during the last decade (US EPA).
- Long-term exposure to indoor air pollutants can be detrimental to human health and
- Can lead to sick building syndrome, building related illnesses and in extreme cases cancer.

Indoor Air Quality: Health Implications

- Levels of pollutants in indoor environment can be up to 10 times higher than that of outdoor air.
- Indoor sources such as combustion byproducts, building materials, office equipment and consumer products [3,4].
- Many air purification technologies have been developed for removing contaminants from indoor air such as:
 - Filtration, adsorption [5–8],
 - \circ ozonation [9–11],
 - non-thermal plasma [12,13],
 - photocatalytic oxidation [14–17].

Duration of Microbe **Persistence** [range] Bacteria - Gram (+) Mycobacterium tuberculosis (Tb) 1 day - 4 months Staphylococcus aureus (MRSA) 7 days - 7 months Enterococcus (VRE) 4 months Clostridium difficile (C. diff) 5 months Bacteria - Gram (-) Escherichia coli (E. coli) 1.5 hours - 16 months Serratia marcescens 3 days - 2 months Acinetobacter 3 days - 5 months Fungi Candida 1 - 150 days Viruses Norovirus 8 hours - 7 days Influenza virus 1 - 2 days Hepatitis B virus Less than 1 week

Maintaining sanitary **SURFACES** is critical for reducing the spread of communicable diseases.

Air Purification Technologies

Air cleaning technology	Purification mechanism	Treated pollutants	Purification performance	Advantages
■ UV-PCO	Photocatalysts under exposure of UV light generate radicals in the presence of water and O ₂ . Radicals are reactive species to oxidize pollutants.	A broad range of indoor pollutants: soots, inorganic compounds, VOCs, airborne microbes	Performance depends on the humidity, light source, inlet concentration, photocatalyst, reactor	Degrade toxic compounds into non-toxic final products; operation at room temperature and pressure; low pressure-drop; low energy consumption
Filtration [87—89]	The mechanical or physical operation for the separation of solids from gases by trapping particles	Particulate matter, airborne microbes (if a filter treated with antimicrobial agents)	Higher removal efficiencies for larger particles; HEPA filter can remove 99.97% of 0.3 μm airborne particles.	No removal of most odors, chemicals, or gases; low efficiency for small particles; filter replacement
UV germicidal irradiation (UVGI) [96]	Airborne microorganisms are killed by adsorption of UVC light at 253.7 nm.	Airborne microbes	Performance depends on the lamp intensity, the distance of the microorganism from the lamp, temperature, RH, and air exchange rate.	Effective in inactivating airborne microorganisms; low energy consumption.
Ozonation [72]	Ozone, generated by UV or NTP discharge, takes reactions with pollutants and oxidizes them.	Microorganisms, some VOCs, some smells and gases.	Performance depends on retention time, humidity level, and nature of pollutants.	Ozone can produce hydroxyl radicals.
■ Electrostatic precipitator (ESP) [97,98]	Ionization of stream is followed by changing, migration, and collection of charged particles.	A wide range of particles	Collection performance relies on particle size and design parameters such as airflow rate, voltage, collection cell area, and the electric field strength	Effective at removing particles larger than 20 nm.

Air Purification: Chairside Aerosol Extraction

- Removes High Volume of Droplets & Aerosols Produced During Treatment (Filtration System).
- HEPA Filtration System: 3 Layers of HEPA filtration system, stopping virus and germs ≥0.3μm with 99.995% efficiency.
- Medical Grade UV Light Disinfectant System: Killing all the virus and germs in the filter.

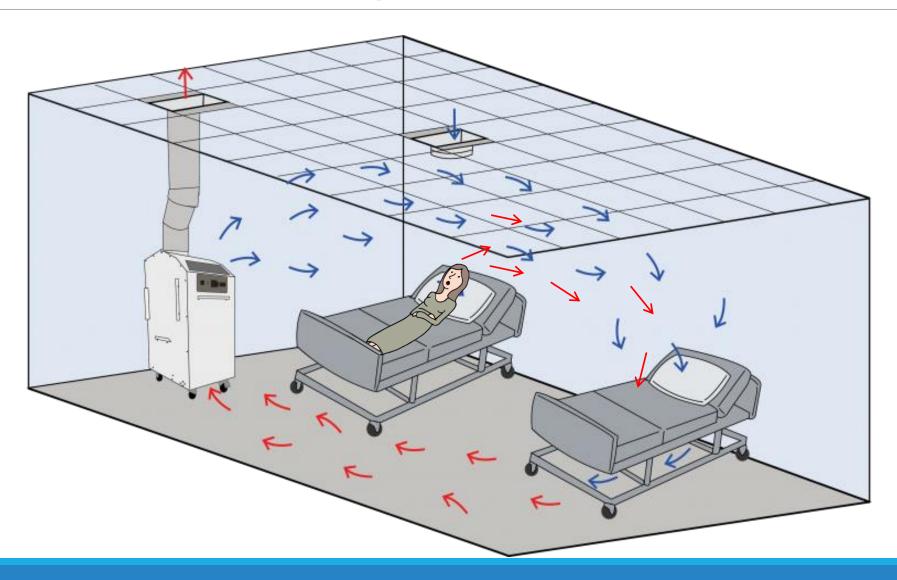
Replacement Items:

- HEPA Filtration
- UV Light
- Suction Cover
- Primary Filtration
- Dust Filtration

Specifications:

Mode: SP1000 Voltage: AC110V

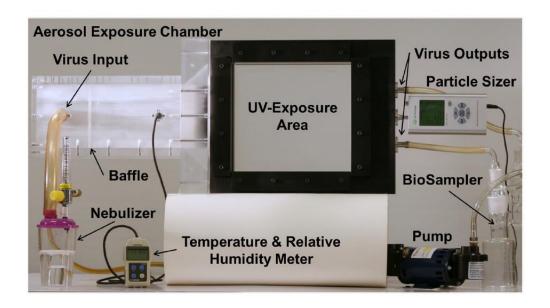
Power: 1200W


Air Purification: Negative Pressure

DESCRIPTION

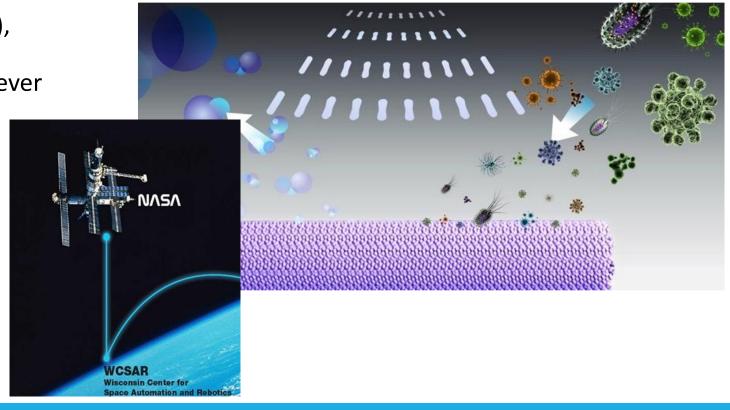
- Combining known technologies into a portable unit
- HEPA filtration for airborne particulate removal
- Ultraviolet (UV) light to aide in sterilizing airborne viruses and bacteria trapped in the HEPA
- Only air having passed through both UV and HEPA will be returned to hospital HVAC
- 12 air changes per hour via HEPA filters
- Pressure differential of 0.01" minimum between room and adjoining spaces (May require additional seals around doors or other significant leak points in large rooms with poorly sealed doors)

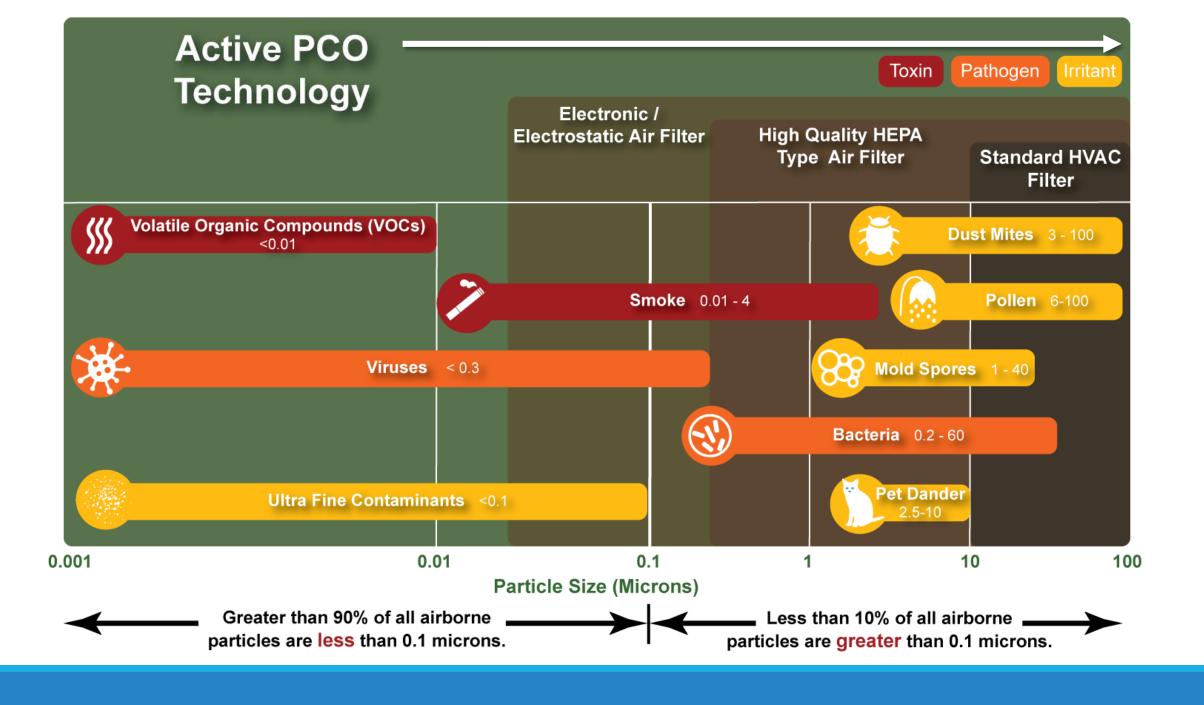
Air Purification: Negative Pressure



Air Purification: Far-UVC Lights

- Far-UVC light may represent a safe and efficient technology for controlling pathogens.
- Far-UVC light (207–222nm) efficiently inactivates bacteria without harm to exposed mammalian skin.
- This study shows for the first time that far-UVC efficiently inactivates >95% of aerosolized H1N1 influenza virus.
- More studies are needed on other pathogens and contaminants.
- Limitations for surfaces due to decreasing light intensity with distance from the source.




OPEN Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases

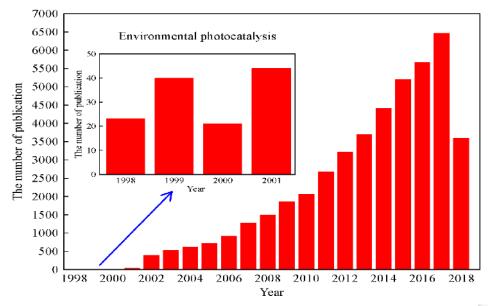
Air Purification: PCO Technology

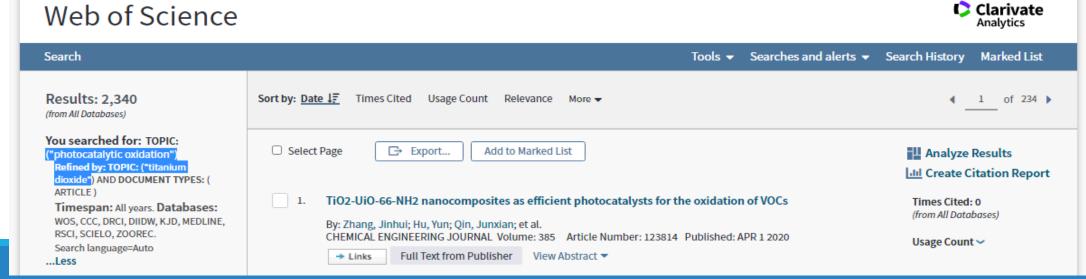
- PCO = Photocatalytic Oxidation developed more than 20 years ago by NASA
- Most effective scientifically proven technology for killing viruses both in the air and on surfaces (hundreds of peer-reviewed publications showing this)
- Proven to destroy many viruses (>99.9), bacteria, volatile organic compounds (VOCs), molds, fungus and odors wherever they reside
- Proven both safe and effective in laboratory and industrial testing – no potentially harmful health effects

PCO Technology: NASA-developed

NASA had a Problem:

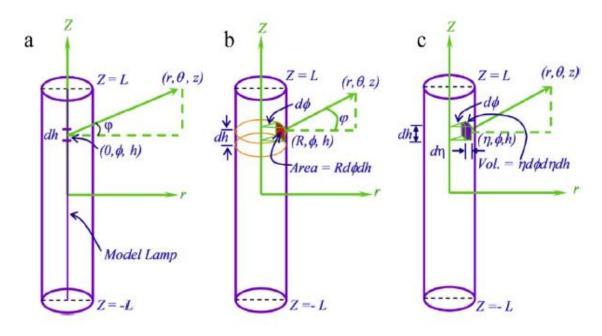
In planning for a manned mission to Mars; how to feed the crew? Plants that produce fruits and vegetables produce Ethylene, a hormone that signals the fruit to ripen. It becomes too concentrated and causes the fruit to ripen too quickly or rot.

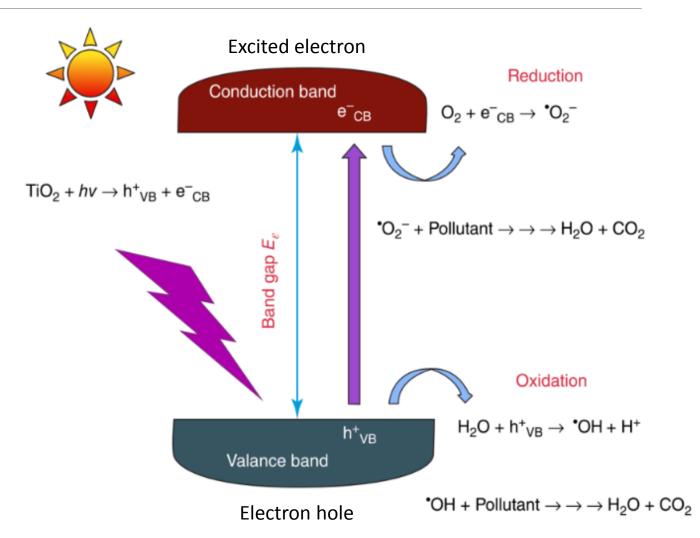



Ethylene Problem

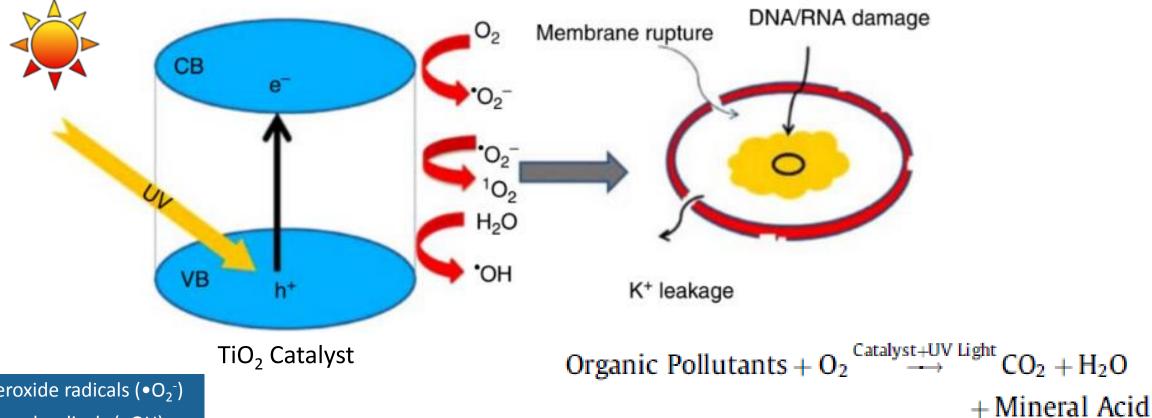
It was able to remove the Ethylene becoming concentrated in the sealed space, and soon it was determined to have many other uses

What We Know – PCO Technology


- Over 35,000 peer-reviewed articles on PCO.
- Many scientifically proven applications: air purification, water purification, wastewater treatment, etc.
- First articles published back in 1970s.
- Refine by applications using titanium dioxide = 2,340.



- Not all "PCO" units are engineered based on NASAdeveloped technology.
- Over 4 million gas-phase PCO reactors are currently in use worldwide.
- Technology was licensed for use in medical, food, military, residential, commercial, marine and hospital applications in 2003.
- Specified in the Norovirus and MRSA protection plan for restaurants, hotels, theme parks, cruise lines, public schools and hospitals.


Y. Boyjoo et al./Chemical Engineering Journal 310 (2017) 537-559

- The excited electrons (e-_{CB}) can react with atmospheric oxygen to form superoxide radicals (•O₂-) or hydroxyl radicals (•OH).
- These reactive oxygen species will take part in the degradation of organic pollutants into water (H₂O) and carbon dioxide (CO₂).

Mechanism of antibacterial action of photocatalytic oxidation

Superoxide radicals $(\bullet O_2^-)$ Hydroxyl radicals (●OH)

- Certain air filters using photocatalytic oxidation have dangerous by-product, study shows.
- Results based on poorly engineered generic designs and bench-scale pilot reactors.

Table 1 Comparison of available PCO air filters.

PCO air filter substrate	Catalyst	Pressure drop ^a (Pa)@170 m ³ /h (100 CFM)	BET surface area (m²/g)	Cost ^b (\$/m ²)
Aluminum honeycomb mesh	V ₂ O ₅ /TiO ₂	1.8	~5[86]	20-50
Nickel foam	TiO_2	10.7	~34[22]	50-80
Fiberglass	TiO_2	35.5	~100[10]	~150
Carbon cloth	TiO ₂	240.7	~800[10]	5-30

^a The PCO reactor was set at one bank with two filters in a distance of 11 cm, which are perpendicular to the direction of air flow.

With countries like China and Korea eager to fix growing air pollution problems, engineers and consumers desperate for new technologies have been forced to try to evaluate and compare PCO systems themselves in the absence of standards. "That's a big problem, there's lots of confusion in the market. We are trying to clarify that confusion and work on developing testing methods," says Zhong.

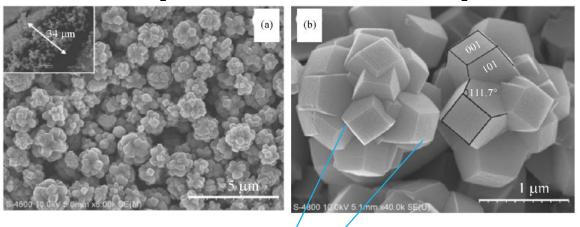
HEPA/PCO Air Purifier - \$50.00

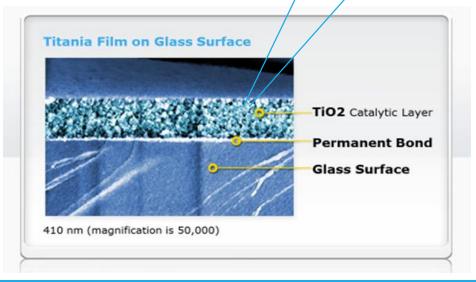
3500 PCO Air Purifier - \$150.00

b The price can be quoted from www.alibaba.com.

 With proper engineering and design, and preparation/coating method, PCO reactors can achieve greater than 99% removal efficiency.

Photocatalyst	Preparation/Coating Method	Configuration	Compounds	Light Source	η _{removal} (%)	Ref.
TiO ₂	Sol-gel	F	Acetone, toluene p-xylene	UV lamp, 254 nm	77-62 (3 L/min)	[95]
TiO ₂	Electrochemical	F	Acetaldehyde	ÛV	99+ (110 min)	[93]
TiO ₂	Sol-gel	F	Toluene	Black light	52 (3.6 L/min)	[86]
TiO_2	Plasma deposited	F	m-Xylene	UV lamp	99+ (30 min)	[94]
$TiO_{2-x}N_x$	Çalcination	P	Toluene	Visible light	99+ (3000 min)	[82]
Pt/TiO ₂	Photo-deposition	P	Benzene	Black light, 300–420 nm	100 (100 mL/min)	[99]
Fe-TiO ₂	Sol-gel	P	Toluene	Visible light	99+ (120 min)	[88]
$In(OH)_3$	Ultrasound radiation	P	Acetone, Benzene, Toluene	UV lamp, 254 nm	99+ (5 h)	[104]
β -Ga ₂ O ₃	Chemical deposition	P	Benzene	UV-lamp, 254 nm	60 (20 mL/min)	[105]
$Ag_4V_2O_7/Ag_3VO_4$	Hydrothermal	P	Benzene	White fluorescent lamp	99+ (120 min)	[84]
Pt/WO ₃	Photo-deposition	P	DCA, 4-CP, TMA	Visible light, >420 nm	99+ (3 h)	[112]
Pd/WO ₃	Calcination	P	Acetaldehyde, toluene	Fluorescence/visible light	99+ (3 h)	[26]

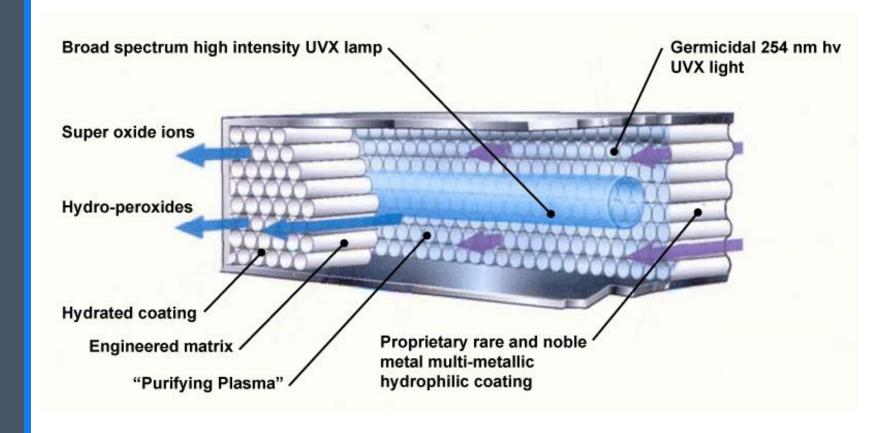

Table 5. Summary of the PCOs used for formaldehyde degradation.

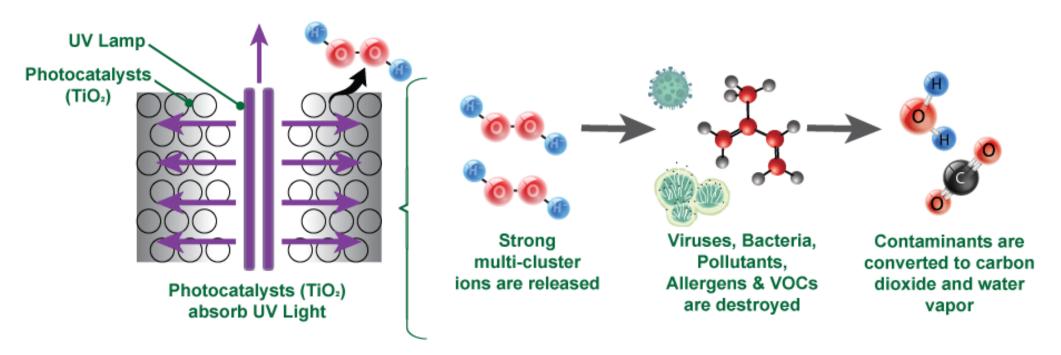

Catalyst	Preparation Method	HCHO Concentration	Light Source	Conversion Efficiency	Ref.
Mesoporous TiO ₂	Evaporation-induced self-assembly	30 ppm	UV light	95.8%	[114]
Amorphous TiO_2 film PEG modified TiO_2 film Ag/TiO_2	CVD method Sol-gel method Incipient wet impregnation	50–55 ppm 20 ppm 500 ppm	UV light UV light UV light	80% 95% Above 95%	[115] [116] [119]

PCO Technology: Reactor

- Using TiO₂ as a catalyst for air-cleaning devices:
 - ✓ TiO₂ must be deposited on a suitable carrier which are usually honeycomb monoliths.
 - \checkmark TiO₂ is also used to increase surface area.
 - ✓ Achieved by porous silica (clays, zeolites, mesoporous materials).
 - ✓ Mesoporous silica: chemically inert, possess high surface areas, transparent to UV radiation, have great physical stability, and have hydrophobic character.

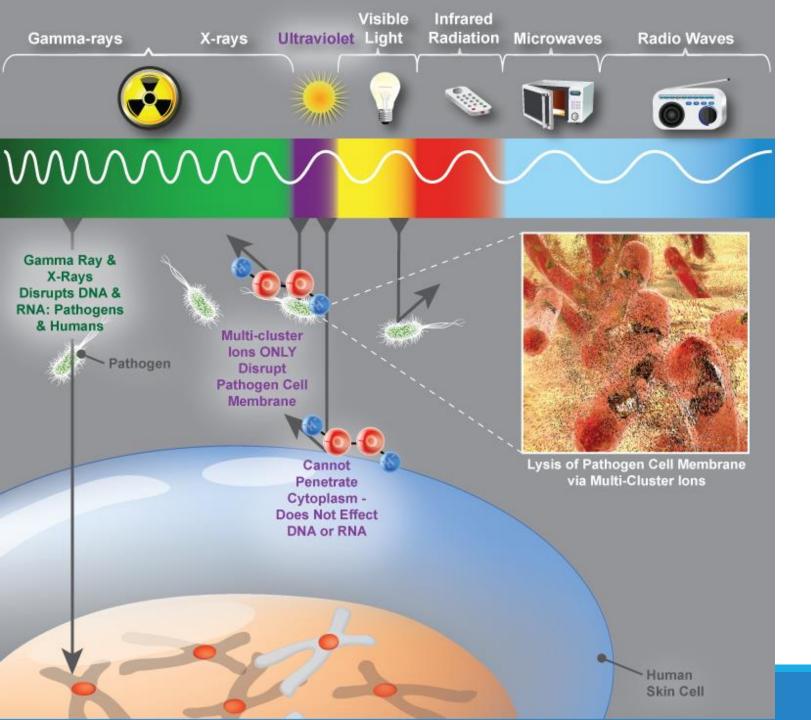
SEM images of TiO₂ films composed of flower-like TiO₂ microspheres




How it Works

- A low wattage UV light bulb is enclosed in a solid structure (the "catalyst") coated with Titanium Dioxide and other nanoscale elements.
- When the UV light is turned on, the catalyst is irradiated and a gaseous state is then created directly above its surface (often called "metastate").
- As air passes over the metastate, large clusters of positively and negatively charged ions are formed.

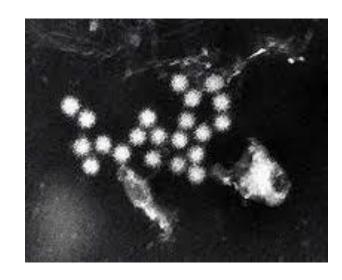
Gas-phase PCO Technology: How it Works



Reactor: Gas-phase PCO Technology

How it Works

As these ion clusters are released into an interior environment, they can be attracted to a negatively or positively charged cell of a pathogen (virus or bacteria), and they can break down chemicals such as volatile organic compound (VOCs).



Gas-phase PCO: How it Works

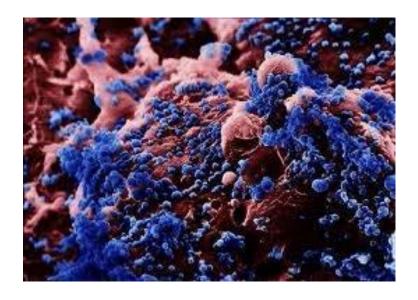
- For pathogens, a minute electrical charge is then released, piercing the cell of the pathogen and killing it; even a cell as small as a virus.
- Multi-cluster ions cannot penetrate cytoplasm; they cannot affect DNA.
- These reactive oxygen species (ROS) could further react with organic pollutants, thus eventually achieving the mineralization of these compounds.

Norovirus

- Norovirus is a group of related, single-stranded RNA, highly contagious infections and the most common cause of acute gastroenteritis in the United States.
- Known by other names such as stomach flu and food poisoning, it is responsible for 50% of foodborne outbreaks of gastroenteritis.
- Noroviruses spread from person to person by direct contact, touching contaminated surfaces, and contaminated food and water supplies.

The effectiveness of Gas-Phase
Photocatalytic Oxidation Technology:
Deactivation of > 90% of Murine
Norovirus (MNV) microorganisms
were achieved after 4 hours.

H1N1 Virus (Swine Influenza)


- The H1N1 virus is a unique strain of influenza.
- The Centers for Disease Control determined that the pressure contained genes from four different flu viruses – North American swine influenza, North American avian influenza, human influenza, and swine influenza viruses typically found in Asia and Europe.
- The virus spreads from person to person by droplets from coughing and sneezing and by touching a person contaminated with the virus, then rubbing one's eyes, nose or mouth.

The effectiveness of Gas-Phase
Photocatalytic Oxidation Technology:
Testing on stainless steel surfaces
using PCO resulted in ~99%
microbial reduction.

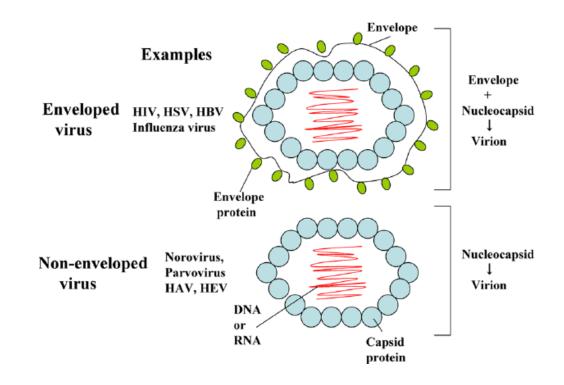
H5N1 Virus Avian Influenza (Bird Flu)

- H5N1 has evolved into a flu virus strain that infects more species than any previously known strain, is deadlier than any formerly known strain.
- Epidemiologists are afraid the next time such a virus mutates; it could pass from human to human.
- Direct transmission of avian viruses to humans is possible.

The effectiveness of Gas-Phase Photocatalytic Oxidation Technology: Testing on stainless steel surfaces using PCO resulted in ~99% microbial reduction.

Sneeze Test

- Many microbials are transmitted in the air from one animal or human to another.
- It has been reported that tests were run at a simulated sneeze test lab using a sneeze simulation machine which showed a 78% reduction of microbials aerosols within 3 feet.



Pathogen	Results			
Norwalk Virus (Norovirus)	99.6% reduction			
Methicillan-resistant Staphylococcus aureus (MRSA)	99.9% reduction	11.405) t - m. T	To at Dage
Staphylococcus aureus (S.aureus)	99.8% reduction	UX105 I	Ux105 Reactor: Test Res	
Clostridium difficile	99.8% reduction		Virus	000/
Listeria monocytogenes (Listeria)	97.3% reduction		Virus	99%
Group A streptococci (GAS)	97.4% reduction			
Pseudomonas aeruginosa	99.9% reduction		Bacteria	99%
Streptococcus pneumonia	99.9% reduction			
Bacillus anthracis (Anthrax)	97.6% reduction			
H1N1 (Swine flu)	99.9% reduction		Odors	55% - 98%
H5N1 (Bird flu)	99.9% reduction	1 X		
Stachybotrys chartarum (Fungus and spores)	99.4% reduction		Mold	97% - 989
Candida albicans (Mold and spores)	99.5% reduction			
Volatile Organic Compounds (Over 60 VOCs)	91% average reduction			
Volatile Inorganic Compounds (Ammonia/ Nox/ H ₂ S/ Sox/ O ₃)	89% average reduction		VOCs	80% - 999
Odors (Alkanes, Acetone, Alcohols, Ketones)	87% average reduction			
Basidiospores (Allergens, Fungus, Ringworm)	99.4% reduction		Smoke	70%
Allergens (Pet dander, dust mite antigens)	91% reduction			

Gas-Phase PCO Effectiveness: COVID-19

- To prove PCO kills a high percentage of Coronavirus (COVID-19, an enveloped virus), a surrogate or close relative of this strain was used for test purposes.
- Previous testing on H5N8, an enveloped virus used as a surrogate for H1N1 (Swine Flu) and H5N1 (Avian Flu) viruses, results found a complete reduction in virus viability (100% in 24 hours).

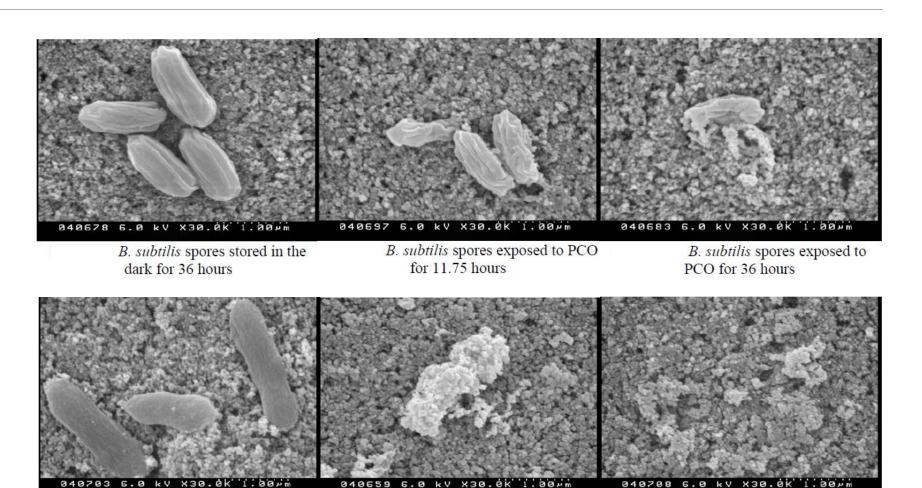
Since COVID-19 is very similar to H1N1 and H5N1, it is clear evidence that the *gas-phase PCO reactor* would have a significant impact on the current strain of Coronavirus.

Testing by: Dr. Leila K. Riley RADIL, Columbia, Missouri

Dr. M.T. Ortega, et al 2007, Kansas State University

Reviewed by: Dr. Gregg Dickerson, MD

Dr. Claude Selitrennikoff, PhD University of Colorado


School of Medicine

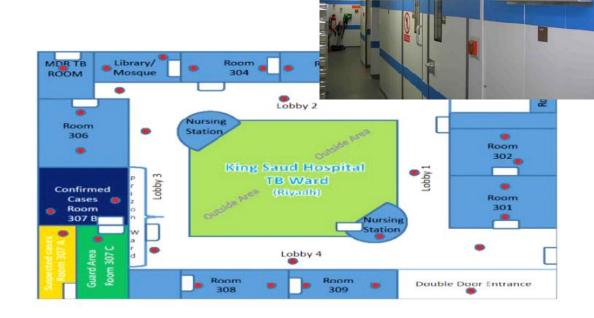
PCO Effectiveness: Cellular Mineralization

S. marcescens stored in the dark

for 36 hours

The progression from initial Bacillus subtilis spore samples to samples that show significant cellular mineralization after PCO technology.

S. marcescens exposed to PCO


for 11.75 hours

S. marcescens exposed to PCO

for 36 hours

PCO Technology: Medical Facilities

- Used in areas like the emergency rooms, waiting areas, patient rooms, CSSD, ICU and Out Patient departments.
- Installed in hospital ward: Bacterial count dropped by almost 92% within minutes during an orthopedic surgery.
- In December 2001, a team of researchers at the University of Wisconsin conducted tests and published results, which showed that this technology killed 99.9998% of anthrax-like spores (*Bacillus thuringiensis*).

- Created by NASA
- ✓ Patented photocatalyst that does not degrade
- Produces no harmful byproducts (no Ozone)
- Uses no filters
- ✓ Listed by the FDA as a Class II Medical Device (501 K)

PCO Reactors: Dental Office Placement

Ux105 GR40 Ux105 BL

Example: *Ux105 reactor*

Factors to consider:

- Number of operatories: private or open.
- Number of occupants.
- Square footage.
- Desired treatment area.

Private Laboratory Office Reception Soffit

Placement:

Desk or wall mount (in-duct systems less ideal for dental offices).

1,702 SF Dental Office

PCO Reactors: Dental Office Placement

Ux105 GR40 Ux105 BL

Example: *Ux105 reactor*

Factors to consider:

- Number of operatories: private or open.
- Number of occupants.
- Square footage.
- Desired treatment area.

PCO Reactors: Dental office placement

Ux105 GR40 Ux105 BL

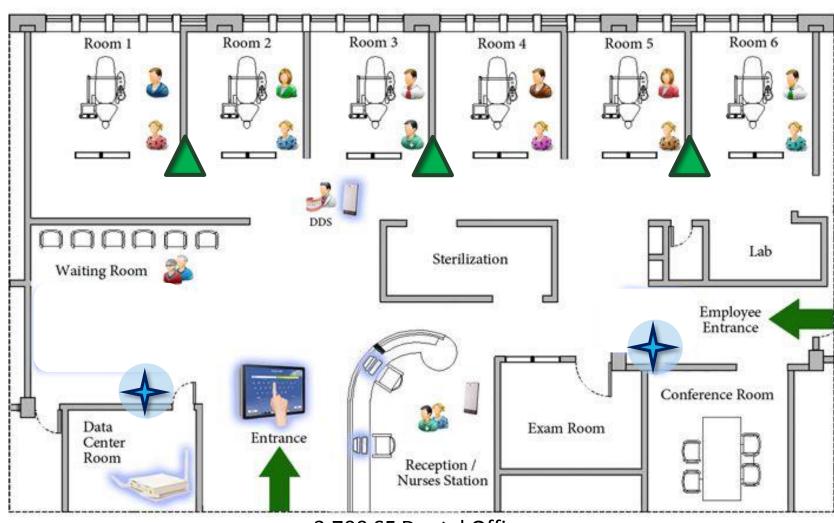
Example: *Ux105 reactor*

Factors to consider:

- Number of operatories: private or open
- Number of occupants
- Square footage
- Desired treatment area

2,400 SF Dental Office

PCO Reactors: Dental Office Placement



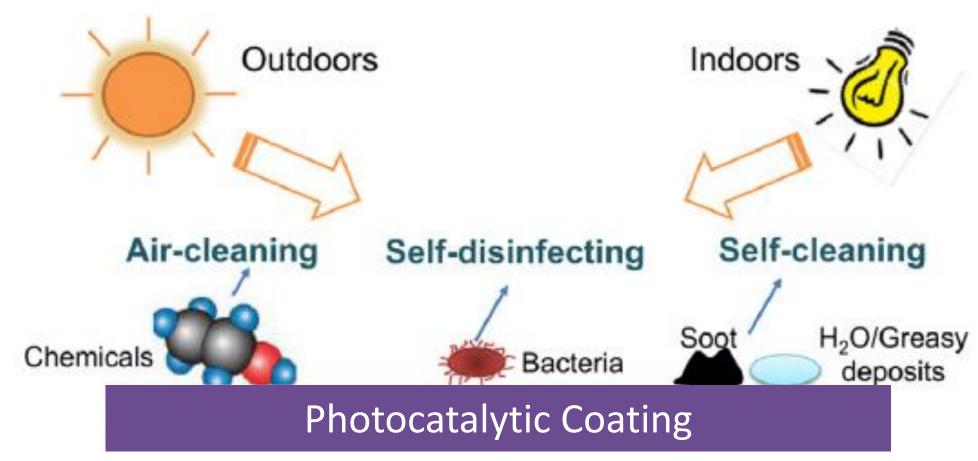
Ux105 GR40 Ux105 BL

Example: *Ux105 reactor*

Factors to consider:

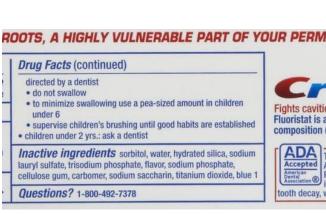
- Number of operatories: private or open.
- Number of occupants.
- Square footage.
- Desired treatment area.

3,700 SF Dental Office


PCO Reactors: Dental Office Placement

Waiting rooms, lobbies, reception areas (desk or wall mount).

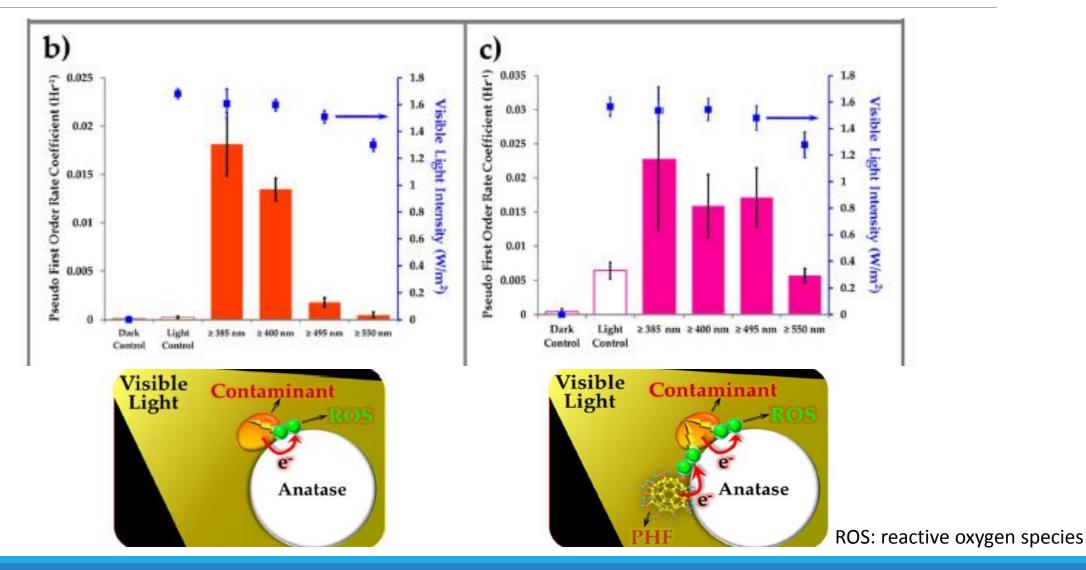
Multi-functional Photocatalytic Coatings

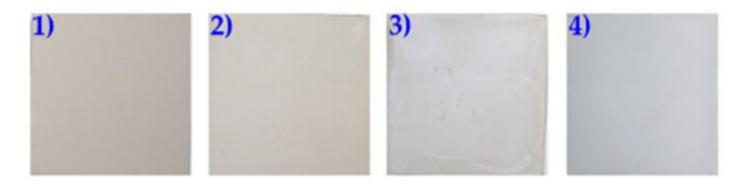

Substrate: plastic, fabric, ceramic, glass, metal, plastic, tiles, wood, vinyl, painted surfaces, and porous surfaces

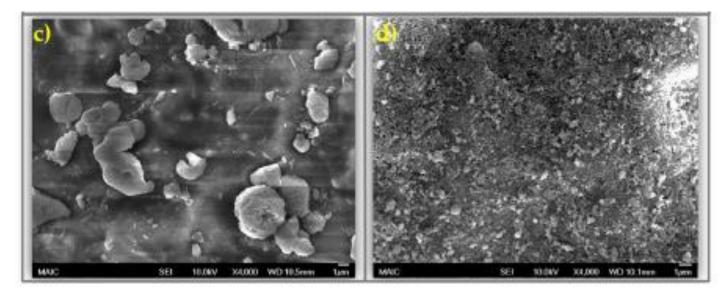
Multi-functional Photocatalytic Coatings

Bactericidal

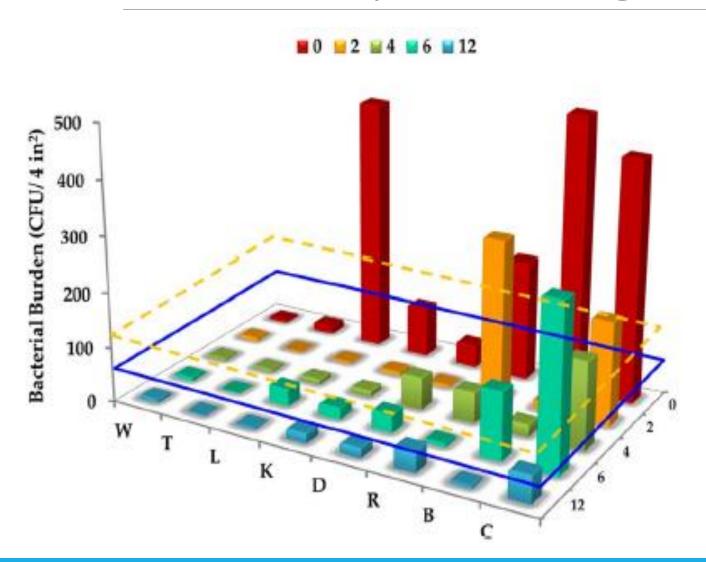
- Photocatalytic TiO₂ coatings have been used medical applications, construction of sterilized coatings for hospitals, indoor applications, and food industry.
- The UV-light induced photocatalytic antibacterial action of TiO₂ coatings was initially demonstrated two decades ago.
- The photocatalytic antimicrobial effect of illuminated TiO₂ arises from the production of OH•, •O₂⁻, and H₂O₂ (hydroperoxides).






Titanium Dioxide is used in common household products such as food, medicine, toothpaste and sunscreen.

Photocatalytic Coatings: Visible Light Reaction


Photocatalytic Coatings

- Design of transparent photocatalytic coating: Changes in appearance of tile surfaces achieved with application of TiO2 coating at particle loadings of:
 - 1) 0mg/cm2
 - 2) 0.128mg/cm2
 - 3) 1.28mg/cm2
 - 4) 6.4mg/cm2
- Scanning electron micrographs of TiO2 coatings prepared from formulations (c) without any dispersants and (d) stabilized with 0.01M NaOH as dispersant.

Photocatalytic Coatings

Reduction in bacterial burden on hospital surfaces with antimicrobial photocatalytic coating.

 For a given surface, the bars represent counts (n=3) at times from 0 to 12 months.

W = Wall R = Bathroom Rail

T = Thermostat B = Bed Rail L = Locker C = Counter

K = Knob **D** = Soap Dispenser

Yellow dashed line indicates the average microbial counts on copper surfaces in a clinical trial.

Blue line indicates the threshold of microbial counts for benign surfaces.

Photocatalytic Coatings

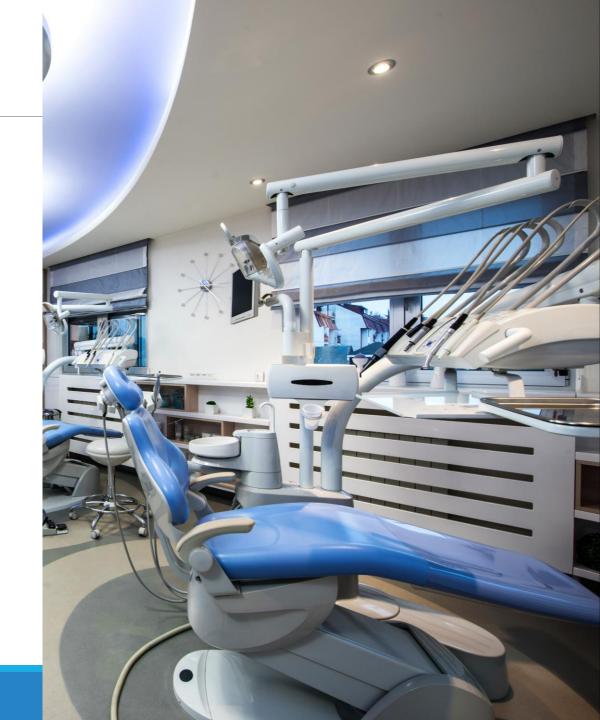
How to apply:

- Simple wipe and/or trigger-spray application
- HPLV sprayer or fogger

When to reapply:

- Up to 10 years on low-touch surfaces
- 3-5 years on most surfaces
- 1-2 years on high-touch surfaces, depends on use, abrasion and cleaners

Where to apply:


- Walls
- Light fixtures
- Ceilings
- Windows

High-touch surfaces

- Countertops
- Floors
- Dental chairs
- Equipment
- Scrubs/lab coat
- Stationary


Other areas

- Operatories
- Waiting rooms
- Exam rooms
- Offices/kitchens

Simple Methods for Testing PCO Effectiveness

Ion Meter

Air ion meter for precise measurement of positively charged air ions and negatively charged air ions. This air ion meter is a true ion density

- Extremely sensitive measuring range.
- Response time: approximately 1 second.
- Practically temperature independent.
- Very easy to use.

ATP Meter

- Provides real-time feedback
- No data loss if battery or power failure
- ✓ Range of instrument reading: 0-9,999 RLUs
- ✓ Produces test results in 15 seconds
- ✓ Durable (withstand 1-meter drop test

Designed with state of the art electronics the ATP Meter is easy to use, extremely sensitive.

 ATP testing is a universally recognized tool used by organizations of all sizes for measuring the hygiene levels of surfaces in order to ensure consistent sanitation practices as well as public safety.

Simple Methods for Testing PCO Effectiveness

 Agar plates should be placed in a refrigerator upon arrival, minimum shelf life of 3 months.

Brief Instruction:

- 1. Take out one sterile cotton swab. Gently wipe a test area with the cotton swab to pick up bacteria.
- 2. Gently streak the agar plate with the cotton swab to transfer the bacteria onto the surface of the agar plate.
- 3. Cover the agar plate and place it in an upsidedown position in an incubator with a temperature between 85 and 100 °F..
- 4. Incubate for 12-48 hours.

Note: Must control for environmental parameters.

Thank you!!

Please complete the evaluation to receive CE

Save The Date:

The New generation of Tobacco Addition

May 8th at 12 noon ET

